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Abstract. We consider the behaviour of finite automata on infinite bi-
nary sequence and study the class of random tests which can be carried
out by finite automata. We give several equivalent characterizations of
those infinite binary sequences which are random relative to finite au-
tomata. These characterizations are based on the concepts of selection
rules, martingales and invariance properties defined by finite automata.

1 Introduction

Stimulated by Kolmogorov and and Chaitin, several attempts have been made
recently, by Martin-Lo6f, Loveland, and Schnorr, to conceive the notion of infinite
binary random sequences on the basis of the theory of algorithms. In Schnorr
[13] an intuitive concept of the effective random test is proposed. The hitherto
investigated, different approaches to this one has proven to be equivalent. It thus
provides an robust definition of the notion of randomness. We say a sequence is
random if it can pass any effective random test.

Random sequences can not necessarily be calculated effectively, i. e., they are
not recursive. The problem, which is important for the application, to calculate
the possible “random” sequences can therefore only be investigated in the sense
that random sequences can be approximated by recursive sequences. Recursive
sequences that behave “random” are called pseudo-random sequences. From a
pseudo-random sequence one would expect that it at least fulfills the“most im-
portant” probability laws. The assumption is that the algorithmically simple
random tests correspond to particularly important probability laws. Among the
algorithm, those represented by finite automata are to be regarded as particu-
larly simple. This raises the question of whether there is an excellent class of
randomness which can be tested by finite automata.

To answer this question, we restricted some of the approaches described in
[13] to the implementation of effective random tests and to consider only those
that can be carried out through finite automata. We consider the following ran-
dom concepts from [13].

(I) The principle of dichotomy of game system,
(IT) The principle of unpredictability and
(IIT) Invariability characteristics of the random sequence
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In each of these cases the so-called Bernoulli sequences (also called normal,
non-reactive sequences or admissible numbers) fulfill all random tests which can
be carried out by finite automata. Thus, precisely the Bernoulli sequences are
classified as random against finite automata.

We restrict ourselves here to the case of uniform distribution over a finite
alphabet. A transfer to finite probability spaces with arbitrary probabilities is
obvious. The results of this work generalize the results of the investigations by
Agafonoff [1] on the selection rules generated by finite automata.

2 Bernoulli sequences and ergodic states of finite
automata

Let X be a finite set, let X* (X°°) be the set of finite (infinite) sequences over
X. Let A € X* be the empty sequence. |u| designate the length of u € X*.
For u € X* (z € X*°) and i € N (N is the set of nonnegative integers), u(7)
(2(7)) is the initial sequence of length i of u or 2. For u € X*, y € X* U X,
denote uy € X* U X the concatenation of u and y. This naturally results in a
product AB C X*UX* of set AC X*and BC X*UX>.X,:B — {0,1} be
the characteristic function (indicator function) of set A C B. ||A| denotes the
number of elements of set A. In the following || X|| = p. We assume p > 2 by
default.

Definition 2.1. We say z € X*° is Bernoulli sequence (for uniform distri-
bution) if

1 n
= V) = lul
Jim -~ 21 Xx-u(2()) =p
for allu e X*. Let B C X be the set of Bernoulli sequence.

That is the relative frequency of u occurring as a subsequence of z, is just
the probability of u. Bernoulli sequences we defined here are also studied by
Borel, Copeland, Reichenbach and Popper under the names of normal number,
admissible numbers, and non-reactive sequences.

Let g denote the product probability measure on X°° of the uniform dis-
tribution on X. Then we have the following result from standard theory of
probabilistic theory.

Corollary 2.2.
(B) = 1.

Now let us establish a first connection between Bernoulli sequences and finite
automata.

Definition 2.3. A finite automaton is a 4-tuple U = (X, S, 0, s1), where X and
S are finite sets, namely the input alphabet X and state set S. sy € S is the
initial state. § : X x S — S is the transfer function.
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If the automaton reads the input symbol z € X in state s € S, it goes
into the state §(z, s). We describe the behavior of the automaton on a sequence
recursively:

(A, 8) =s
6" (ux, s) = d(x, 6% (u, s))

Now let us prove proposition 2.5, which later makes it possible to restrict our-
selves to strictly connected automata by testing finite automata. Some prelimi-
nary considerations are necessary.

Let U be a finite automaton, and s,t € S. s is transformable to ¢t <—
(Ju € X*)0*(u, s) =t. (or we said t is reachable from s). .

We denote this as s — t. The relation — is reflexive and transitive. — can
be restricted to an equivalence relation <> as follows:

St &< s—>tANt — s.

For s € S, we denote 5 C S as the equivalence class of s of the equivalence
relation <. Denote S, to be the set of equivalence classes. We say U is strong
connected if S has exactly one equivalence class.

We can define the following partial order in S, ,:

s>t <= (Fues)(vethu—wv
By the definition of <, this is the same as:
s>t << (Vues)(Vwethu—v

Since S is finite, there is a minimal element in S. the minimal element in
S/« has the following ergodic properties:

Corollary 2.4. Let s € S, minimal. Then:
(Va € 5)(Yu € X*)6"(u,a) € 5.

Proof. Assume there are a € § and v € X* with §(u,a) € 5. Let ¢ := 6*(u, a).
We then know ¢ # 5 and § > t. This is in conflict with the minimality of 5. O

The minimal elements of S/, are called ergodic set in the theory of Markov
chain. We say elements in such sets are ergordic. This notion is important in
the following statement.

Proposition 2.5. Let z be a Bernoulli sequence and U be a finite automaton.
Then there is an n for each state s such that 6*(z(n), s) is an ergodic state.

The proof of the proposition is based on:

Lemma 2.6. For every finite automaton there is a u € X*, so that 6*(u,s) is
an ergordic state for all states s.
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Proof. Let S = {s1,---,8m} be the state set of the automaton. We prove by
induction on i such that Vi < m there is a u(?) such that for all j <, §*(u(?, s;)
is ergodic.

Casei=1:Let t € S/, be a minimal element such that 5; > ¢. Then s; — t.
Hence there exists u(!) € X* so that §*(u(!), s;) = t. Then 6*(u}), s) is ergodic.

From i to i+1: Let £ € S/, a minimal element with §*(u(®,s;41) > .
Then 6*(u,s;,1) > t. Choose v € X* so that 0*(v,6*(u'?,s,41)) = t. Set
wY = 4y, Then 6*(u*V), s;11) = t. Since t € S/, is minimal, it follows
that it is ergodic. Note that for all j < 4, 6*(u(+D, s;) is also ergodic, since by
induction hypothesis, 0*(u(¥, s;) with j < i is ergodic, and ergodic states can
only transfer to ergodic states. O

Proof of Proposition 2.5. Let z be a Bernoulli sequence and U a finite
automaton. Let u € X* fulfills Lemma 2.6. Then u occurs as a subsequence of
z. Choose n so that z(n) € X*u. Then it follows from 2.6 that §*(z(n),s) is
ergodic.

3 Finite automata generated asset function

We want to consider games (in naive sense) about sequence u € X*. The result of
a game over the sequence u is a non-negative real number V (u), which indicated
the capital of the player after he played over the sequence. Overall, a function

V:X* = R", where RT is the set of non-negative real number,

is generated by a fixed “game strategy” of the player, which he follows at play
over a sequence u € X*. A game is generally regarded as “fair” if the function
V satisfies the Martingale Property (M):

V(u) = % > Vi) (ueX"). (M)

zeX

In this case the chance to win is just as rough as the opportunity to lose. In
the following, whenever we say asset function, we mean functions that satisfy
property (M). Or in today’s terminology, they are martingale.

Intuition of the asset function: at the beginning of the game the gambler has
capital V(A) € RT. After playing over the sequence u € X*, he bets an amount
of B.(u) € RT on z € X being the next symbol coming after u. The amount of
his betting on all possible symbols should not exceed the capital he has. That
is, the betting strategy B, : X* — RT should meet the betting constraint

(B):
> Bo(u) <V(u) (ueX7) (E)

zeX
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Then the capital V(uz) after this game round is determined by the payoff con-
dition (A):
V(uz) = V) + 3 (000y — 1)By(w), (A)
yeX

where ¢, 4 is the Kronecker Symbol. That is, for the bet on y, the player receives
(p — 1)-fold on the occurrence of y. It is easy to see that the conditions of (A)
satisfy the martingale condition (M). It follows from (E) that V' is not negative.
Conversely, it it not difficult to show that every asset function V : X* — RT
can be generated by suitable function B, : X* — RT with the property E.

Now let’s investigate the asset functions obtained from finite automata U =
(X, S, 4, s1). These are the ones for which the quotient V (uz)/V (u)depends only
on the instantaneous state d*(u, s1) of the automaton and on the input symbol
x. We then view these quotients as output of the automaton.

Formally, we define the function V3, : X* — R™ that induce by an automaton
U= (X,S,0,s1) with an output function A : X x S — R* as:

Vi(A) = 1
Vu(uz) = Vi (u)A(z,6%(u,81)) (ue Xz € X) (3.1)
(Multiplication in R)

V14 is a martingale if and only if:

Z)\(x,s):p (s€S)

zeX

We then say such martingales are generated by finite automata.

Now we define it in terms of betting strategies. Let U = (X, 5,d,s1) be a
finite automaton and X : X x S — Rt be an output function. Then one can
define B, : X* — RT (z € X) and a function V; : X* — R¥ as follows:

Vu(d) =1
Bo(u) = Vy(u)Mx, 6 (u, 51))
Vu(uz) 5 Vu(u) + > (pOey — 1)By(u) (3.2)
rzeX
=Vu(l+ > Py — DAY, 07 (u,51))) (ue X,z € X).
reX

The betting constraint (E) is fullfiled exactly when

ZX(Q’J,S) <1 (s€?).

zeX

In this case, V; is not negative and thus a martingale. Note that (3.2) say the
fraction of capital B, (u)/Vy(u) that bets on x, depends only on the instanta-
neous sate 6*(u,s1) and z. In the above definition, equation (3.1) and (3.2) is
just the payoff condition (A).
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Due to (3.2) (last formula), however, the quotient Vi (ux)/Vy(u) also de-
pends only on the state 6*(u,s1) and x. This means that the martingale we
defined in (3.2) can also be defined in the way of (3.1), if we choose a suitable
output function. To do this, let z € X and s € S and:

AMz,s) =1+ Z (Pdzy — DA(y, 8).
yeX

Conversely, let Vi, be induced by U, and the output function A be as in (3. 1)
Now let A(z, s) == A(z, s)/p. We show by induction that for the function B,, Vi
the following are true:

Vu(u) = Vy(u), Byg(u)= %Vu(uac) (ue X* z € X).

For x = A, that is clear. We go from u to uzx. It follows

Vu(ux) = VU(“) + Z (péw,y - I)By(u)

yeX
= VZ/{ + Z P5z o p VM(uy)
yeX
= Vu(u) + pp~ Vi (uz) — ZVuuy
yeX
= Vy(ux).
Also we have:
B (uy) = Vi (uy) Mz, 5 (uy, s1)), by (3.2)
= Vu(uy)pil)‘(x, 5" (Uy, 81))
=p Vu(uy). by (3.1)

Overall, we have

Proposition 3.1. The class of martingales defined by (3.1) and (3.2) based on
a finite automaton U, are the same.

In the following, we use martingale defined by (3.1). (Added by translator:
Instead of using the term “Bernoulli sequence”, we use “normal sequence” or
“normal number”; we also call a martingale generated by finite automata a
“finite state gambler” for convenience.

4 Characterization of Normal Sequence by Finite State
Gambler

We view a finite state gambler V;; : X* — RT as a random test. A sequence
z € X*° is to be rejected by this test as not random, if V;; unbounded increases
along z, that is, if

lim sup Vi (z(n)) = oo.

n—oo
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This requirement results from the principle of dichotomy of game system. The
following first essential result of this work shows that normal numbers and non-
normal number differ considerably with respect to finite state gamblers.

Notation: the quantifier V°°n means “for all but finitely many n”; and 3*°n
means “for infinitely many n”.

Proposition 4.1. (a) Let 2 € X be a normal number and Vi : X* — RT be
a finite state gambler. Then either (1) or (2) applies.

(V°n e N) : Vy(2(n)) = Viu(z(n + 1)). (1)
there is an r with 0 < r < 1, such that,
(V*°n e N) : Vy(z(n)) <r™. (2)

(b) Let z € X°° be a non-normal sequence, then there is a finite state gambler
Vi and r > 1, such that

(3*°n e N) : Viy(2(n)) > r"™.

Part (a) states that the asset function Vi, on a normal number z either
becomes constant after a finite number of steps or decreases exponentially. In
order to prove this, we show that the quotient Vi, (z(n + 1))/Vy(2(n)) takes the
value 1+ € as well as 1 — e approximately as frequently. Since (1 + €)(1 —¢) =
(1—¢€%) < 1, the assertion follows. Part (b) says that, on a non-normal sequence,
a suitable V;; can grow exponentially fast.

To prove this we need two lemma.

Lemma 4.2. Let U = (X, S,d,s1) be a finite, strongly connected automaton.
Let x € X, t €S be fired. Then there is a u € X*, such that

(Vs € 8)(Ti < |ul) : 6 (u(d), ) = t Au(i + 1) = uli)z

Proof. Let S = s1,---,8my. By induction on j, we show that for every j < m
there is a u() such that,

(Vk < §)(3i < [uD]) : 6* (WD (i), s) =t AuD (i + 1) = u(i)a.

Case j = 1. Select v € X* so that 6*(v,s1) =t and let u(V) := vz.
From j to j+1: Let r = §*(u(?). Select v € X* such that §*(v,r) = t and
let w(+1) == u(Dyz. the induction assertion is readily verified. O

To prove the second lemma, we need some definitions and propositions from
the theory of Markov chain, all taken from the book [4] Finite Markov Chains
with Stationary Transition Probabilities authored by Kay Lai Chung.

LetU = (X, S, 0, s1) be a strongly connected finite automaton, S = {s1, -+ , S}
the state set.

Let s4, s, € S be fixed. We define the random variables Z,, : X* — S, where
(n € N) as:

Zn(2z) = 6"(2(n), sq)-



8 C. P. Schnorr and H. Stimm

Then Z,, form a Markov chain with initial distribution
(Pi)i=1,.m = (0,---,0,1,0,---,0)
(it is one at the gth place) and transition matrix
1
Pij = 5”{33 € X :6(x,5) =85}

(n)

For the n-step transition matrix (pij ), we have:

(PS) = (pig)™.

It easy to see that S, the state set of the Markov chain, is a positively recurring
class. Therefore the Cesaro limit exists:

IS k)
mj = lim g;m

independent of 7 ([4],§6 Theorem 4 and its corollary and §5 Theorem 6).
We define a function f: S — {0, 1} as follows:

f(s) = {1 if s =35,

0 else.

Then f(Zo) + f(Z1)+ -+ f(Z,) indicates how often the Markov chain visited
state s, in the first n steps. It then applies that

RS _
nh_}rr;o - Z f(Zy) = mp, ni-almost sure

k=0
([4],§15 Theorem 2). According to the definition of the random variable Z,,, since
this is true for every s;, s, € S, we have:

1

(4.3) (Vss,8,€95) :ﬁ{z € X™: nl;rrgo E”{k <n:8(z(k),s) = s = Tl'j} =1.
Starting from random variable Z,, : X*° — S x X (n € N) defined by

Zn(2) = (8"(2(n, 5¢)); Zn41)

one obtains by analogous procedure (with the same ;)

(4.4) (Vs;,8, € S)(Ve e X):

1 -
m o : 1 f— < N * -) = - e e —]} e
,u{z eX nh_r)r;o n||{k <n:0"(z(k),s;) = s A zpp1 =z} ) 1

With the help of these statements, we now ready to prove
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Lemma. 4.5. LetU = (X, S, 4, s1) be a strongly connected finite automaton with
S ={s1,---,8m} beits state set. Then there are numbersm; >0 (j =1,---,m),
such that for all normal sequence z, all s; € S and all x € X

; 1
% = lim —[{k < n:6"(2(k),s) = $; A zep1 =z}

n—oo n
Obviously, the m;’s form a probability distribution on S.
Proof. Let mj (j =1,---,m) be as in (4.4). Due to (4.4), for each €,¢’ > 0:

(4.6) (V°k € N)(Vsi,s; € S)(Vr € X)) :

p—k

1 ; /
{ueXk : ‘E\|q<k:é*(u(q),si):sj/\uqﬂ :x||—%‘ <£}H >1—¢

Furthermore, for very normal sequence z, every k € N and every £’ > 0:

1"

(47) (Fn e N)(ue X¥) |3 Xy, (2ha)) — ) < ¢

For £, > 0, pick k large enough so that (4.6) holds. For k and e’ > 0 pick
n large enough so that (4.7) holds. Then it follows immediately

<5+5/+€”.

1 ) B .
< @) =5y h e =} -

Since the last inequality holds for arbitrary e, g, >0 for sufficiently large k
and n, the convergence expression in (4.5) follows. Since U is strongly connected,
T > 0. ]

Proof of Proposition 4.1(a): We want to investigate the limiting behavior
of finite state gambler. First we show that, without loss of generality, one can
restrict oneself to consider only strong connected finite automata. Let normal
sequence z be an input, then a finite state automaton U = (X, 5,9, s1) arrives
in an ergodic state ¢ in finitely many (some n) steps (by Proposition 2.5).

The limiting behavior of a Vi, on z generated by U is, in the case of Vi, (z(n)) #
0, the same as the finite state gambler V77 on the normal sequence 2,4 12n422n43 ",
where V; is the corresponding finite state machine induced by ¢/ and defined as
U= (X,t95 /B t), in which the state set is precisely the equivalence class of ¢, the
transition function is just § restricted on £, and the initial state is simply t.

Let Vi, be a finite state gamble (defined as in (3.1)), with & = (X, 5,4, s1)
strongly connected and S = {s1,- -+, S$m }:

Vu(ul“) = Vu(u)/\(% 6" (ua 81))
Z AMz,s) =p, (s€89).

zeX
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We distinguish two cases:
(Vs e S)(Vx e X) : A(z,s) = 1. (1)

In this case, Vi is constant. These martingale arise when the player places the
same bets on all z € X.

(Vte S)Y(Ty € X) : Ay, t) < 1. (2)
For a state s € S we define
Us = H Az, s).
rzeX

The following assertion is then verified

Us=1 <<= (VzxeX): Az,s)=1.
With standard methods one can show that the expression [], .y A(x, s) assumes
its maximum 1 exactly at the point A(z,s) = 1 (x € X) under the constraints

Y owex M, 8) =pand A(z,s) > 0.
Dur to Lemma (4.5), for each normal sequence z it follows that

m

s v ([T vg) =1

=1

Dur to (4.8), if for all s € S, Us = 1, then for Vz € X,Vs € X, A(x, s) = 1, this
means the gambler stops gambling. Otherwise there must be some s € S, such
that Us < 1, that is, there exist A(y, s) < 1. This implies

ﬁ Uz <1,

Jj=1

So there is an r with
(Vn e N) : Viy(z(n)) < r™.

Proof of Proposition 4.1(b):

Proof. If z € X*° is not a normal sequence, then there is a u € X*, and y € X
and a § > 0, so that

(4.9) Jm 3y, (0) = p
=1

timsup © D Xixruy @) =p (™" +0).
=1

n—oo T
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We define a martingale V', such that V(w(n+1)) > V(w(n)) whenever w(n+1) €
X*uy. Pick an arbitrary number a such that —1 < a < 1, we define V with
V(A4) =1, and
1 ifw(n) € X*u
V(wn+1))/V(wn) =<1+« ifwn+1) e X*uy
1—a/(p—1) else.

It is easy to see that V' can be implement as a finite state gambler. Let

P (1=p =)

p~ (T +0)
r(a) = (1 + a) (1 —a/(p-— 1))
Then by (4.9) it applies that

limsup V(z(n))r(a)™" = 1.

n—oQ

To prove our assertion, it suffices to show that « can be chosen such that r(a) >
1. Note that r(0) = 1, it suffices to show

d
@ T(a)|a:0 > 0
It applies:
d —|u|(,,— —|u -
1o "(@lao =@ +0) A= p7 = 0)/ (0 1)

= 5p7|u‘+1/(p —1)>0, sinced > 0.

5 Characterization of Normal Sequences by Predictability

In this section, we will consider normal sequence in terms of prediction by finite
automata, in which normal sequences behave like ideal random sequence.
Let z € X°°. Then we interpret an output x € X of a finite automata after
inputting the initial sequence z(4) as the prediction of the next letter z(i + 1).
The following theorem states that the ratio of correct predictions is can be
greater than 1/p if and only if the input sequence is not normal.

Proposition 5.1. A sequence z € X is not normal if and only if there are
finite automata U = (X, S, 9, s1) and an output function X : X x S — X with

) 1
lim sup —
n—oo N

{i <n: )\(zi,5*(z(i),51)) = zH_l}H > 11)
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Proof. “ <" Let z € X*° U = (X,S,0,s1) be a finite automaton with output
function A : X x S — X such that

lirrlrisolip% H{z <n: )\(zi,é*(z(i),sl)) = ZiH}H > }%

Then there is a state t € S, a § > 0 and an infinite set M C N, so that for all

ne M:
<m0t eim) = 1AM = 2}

>77H{z<n 6 (2 (),51):t}"+§

For a fixed a with —1 < a < 1, we define the following martingale V with
V(A4) =1 and

1 0*(w(n)) £t
V(wn+1))/V(wn) =<1+« 0*(w(n)) =t and AN(wn,t) = wpy1
1—a/(p—1) otherwise

One can verify that V is a finite state gambler as define in (3.1). We now set

wi=limsup ~ || {i <0 6 (2(0),51) = )
neM

and
r(a) = (1 + a)aIF +6(1 _ Oé/(p _ 1)>a(1—p* )_5.
Then
limsup V (2(n)) /r(a)" > 1

n—oo
as shown in the proof of (4.1)(b), o can be chosen such that r(a) > 1. Hence z
is not a normal sequence by Proposition 4.1.
“="1f z € X*° is not a normal sequence, then there are u € X*, y € X
and 6 > 0 as in (4.9). Then there exist t € X and § > 0,50 that,

(5.2) Eloon S N ZXX*uy > p o (p T g)

A= ZXX*M <p7|“|(p 5/).

We construct an automaton U = (X, S, 0, s1) and an output function A : X xS —
X, so that the correct prediction ratio is greater than 1/p.
We define a finite automaton U = (X, 5,4, s1) as

S::U:{UEX*:|U|§|U|}, 51 1= A,
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5z, v) = {vx if v < |ul

w  otherwise, with vr € Xw.

and the output function A : X x S — X as:

R e

We discuss two cases.
Case 1:
|lu =0, ie u=A4 (1)

In this case

limsup% H{z <n:Az,d" (z(z),51)) = Zi+1}H

n—roo

. 1yr.
= limsup — H{z <n:zigl :y}H

n—oo N

=1/p+46>1/p.

Case 2:
lu| > 0. (2)

Then we have
1
. = lim — ||yt <n:zi41 =
(5.3) 1/p nll_{rolonH{z_n Zit1 t}H
e .
=t (X 2 Xoul0)
=1lyeXlv

The automaton U would thus make exactly 1/p correct prediction on the
average, if it only outputs t. If u is a substring of z, however, it output y.
Therefore, by (4.9), (5.2) and (5.3):

limsupl H{z <n: )\(zi,é*(z(i),ﬁ)) = zi“}H

n—oo 1

=1/p—p " 1/p—08)+p M (1/p+05/2)
=1/p+6 +6/2>1/p.

6 Invariance Properties Defined by Finite Automata

For z € X be a “random” sequence, we expect the following: If we pick in
some way (by means of a “selection rule”) letters from z, we pick so many such
that a new infinite sequence is formed. Then in this sequence all elements of X
occur equally frequently. That is, it satisfies the strong law of large numbers.
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We consider selection rules which are generated by finite automata, in which
the selection or non-selection of the next letter depends only on the instantaneous
state of an automaton. We can obviously describe this by an output function
A X xS — X*, which satisfies the following additional conditions:

(6.1) either (Vxe€ X):A(z,s)=A (no selection in s)
or (VzxeX):Az,s) =z (select the letter x in s)

By assigning to each infinite sequence z (every finite sequence u) the sequence
@y(z) (or @y (u)) selected from it, we obtain a uniquely determined partial func-
tion ¢y,. In what follows, we say @y(2) is defined if 2 is an infinite sequence then
$y(z) also an infinite sequence. Otherwise we say @y (2) is not define, or z is not
in the domain of &y,.

Agafonov [1] has shown that the chosen sequence satisfies the strong laws of
large number for all selection rules generated by finite automatons, if only the
input sequence is normal and the selected sequence is infinite.

We want to generalize this concept by dropping the essential limitation of
possible output functions. Surely one must not allow all output functions A :
X x S — X*, because with \(z,s) = y (y € X) fixed, then ¢,, is a constant,
which assigns each sequence z € X the sequence yyy - - -, which certainly does
not meet the strong law of the large numbers. We show that it is sufficient to
require “measure-bounded” for ¢, in which there is a k € N'\ {0}, so that for
all measurable sets M C X°:

(G (M) < k().

Certainly, all functions ¢,, generated by selection rules are measure-bounded
(see also Doob); in addition, there are still a large number of additional measure-
bounded functions. As an example, we introduce the permutations: an automa-
ton reads in each of the n members, permutes them, and outputs them again.
The following automaton performs this:

Let 7 : X™ — X™ (n € N be fixed) be a permutation. Y = (X, S,d,s1) be
defined by

S::LJ:{uGX*:Mgn}7 s1 =4
i=0

5 v) = {vx if [v] <n

x ifjul=n

and the output function A : X x S — X*

Aav) = A if lv] <n
T N w(w) if o] = n.

It then applies
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Proposition. 6.2.

(a) If z € X*° is a normal sequence and ¢, is a selecting function generated
by a finite automaton U with an output function A : X x S — X*, then z
is either not in the domain of ¢y or ¢y (z) follows the strong law of large
number:

lim L[|{i < n: (Fu(2)i = )| :% (@ € X).

n—00 M

(b) if z € X*° is not a normal sequence, then there is a computably continuous,
measure-preserving function ¢y @ X — X generated by a finite state
automaton so that ¢y (z) does not satisfy the strong law of large numbers.

Thus the partial, measure-bounded functions generated by finite automata
preserve normality.
¢y, is measure-preserving if for all measurable set M C X*°

(S (M)) = (M)

and computably continuous if there is a totally recursive function i : N — N, so
that for all z from the definition range of ¢, if for any ¢ € N, we have

n > h(i) = |$u(z(n))’ > i.

Proof. (a) Let z € X be in the domain of ¢,,. As shown in (4.1), we can
only consider strongly connected machines. According to Lemma (4.5), each
z € X has a fixed limiting frequency in each state s € S. Thus the frequency
of x in ¢,,(2) has a limit. Let this be K. If K # ;1), then ¢,,(z) is not a normal
sequence for every normal sequence z. That is, the set of normal sequences
(of measure 1) result a set of the measure 0 after selecting. ¢,,(z) is therefore
not measure-bounded, a contradiction to the assumption. Thus follows the
assertion.

(b) The inversion is not difficult to prove (see Agafonoff [1]).
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