
LARGE INTEGER MULTIPLICATION:
A FRIENDLY SURVEY OF ALGORITHMS

JT MILLER

Abstract. How do computers multiply integers larger than the number of
bits within dedicated hardware? This paper provides a survey of several large
integer multiplication algorithms that answer this question. The aim of the
paper is to provide a friendly introduction with many examples such that
undergraduate students can look past the complexity of these algorithms, grasp
the fundamentals, and hopefully understand some of the beauty and wonder
in the algorithms.

Contents

1. Introduction 2
1.1. Prerequisites 2
1.2. Notation and Volume Challenges 2
1.3. Software 3
2. Grade School Multiplication 3
2.1. Integer Representation 3
2.2. Algorithm 4
2.3. Time Complexity Analysis 5
3. Chunky Grade School Multiplication 5
3.1. Algorithm 6
3.2. Time Complexity Analysis 6
4. Karatsuba 6
4.1. Algorithm 7
4.2. Time Complexity Analysis 10
5. Toom-Cook 10
5.1. Algorithm 14
5.2. Time Complexity Analysis 14
6. Convolution, the DFT, and the FFT 15
6.1. The Discrete Fourier Transform 15
6.2. The Fast Fourier Transform 18
6.3. Algorithm 28
6.4. Time Complexity Analysis 28
6.5. The Inverse DFT and FFT 29
7. Multiplication via the FFT 29
7.1. Algorithm 29
7.2. Floating-Point Complications and Time Complexity Analysis 30
8. Modulo Arithmetic and Prime Numbers 30
9. Schönhage-Strassen 31

Date: December 8, 2023.
1

2 JT MILLER

9.1. Algorithm 32
9.2. Time Complexity Analysis 33
10. Conclusion 33
Acknowledgments 34
References 34

1. Introduction

Large integer multiplication is pervasive in our lives in the form of cryptogra-
phy. One need only look at the innards of any cryptography library to find a BigInt
library or API behind the scenes. Within those libraries/APIs are the algorithms
discussed within this paper. There are other less pervasive uses, such as scien-
tific and algorithm research, large-scale data analysis, and of course computational
mathematics.

How do computers multiply integers larger than the number of bits within dedi-
cated hardware? This paper provides a survey of several large integer multiplication
algorithms that answer this question. The aim of the paper is to provide a friendly
introduction with many examples such that undergraduate students can look past
the complexity of these algorithms, grasp the fundamentals, and hopefully under-
stand some of the beauty in the algorithms.

The title of the paper is a tribute to Dr. Silverman’s wonderful book, A Friendly
Introduction to Number Theory [13]. We will start with grade school multiplication,
then cover a simple but useful extension that allows multiplication in “chunks”. We
then cover the first advance in nearly 4000 years [3], Karatsuba’s algorithm. Next
we will discuss the Toom-Cook algorithm that is a generalization of Karatsuba’s al-
gorithm. Next we cover the fundamentals of the Discrete Fourier Transform (DFT)
and Fast Fourier Transform (FFT) to understand how these algorithms are used
to multiply large integers. Finally, we cover the Schönhage-Strassen multiplication
algorithm, which gets us to O(n log n log log n) time complexity.

1.1. Prerequisites. There are surprisingly few prerequisites to understand this
material. The most important prerequisites are some familiarity with mathemat-
ical notation and the desire to understand large integer multiplication. Grade
school arithmetic and trigonometry through complex numbers and the unit circle
is all that is required. The more advanced algorithms would benefit from familiarity
with matrix manipulation, Linear Algebra, and Calculus, but these are not strict
prerequisites. As this is a friendly introduction, we have tried to make the algo-
rithms available to the widest audience possible, and hence avoided discussions that
require more advanced mathematics. Suggestions to make the material available to
an even wider audience are welcome.

1.2. Notation and Volume Challenges. The density and abstract symbolic na-
ture of mathematical notation makes understanding the underlying concepts ex-
pressed by the notation extremely challenging. Human beings are primarily visual
learners, and mathematical notation purposefully condenses and symbolizes ideas
into abstract notation that does not readily translate to an intuitive understand-
ing of the underlying concepts. Being able to understand the notation takes time

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 3

and practice. Developing an intuitive understanding of what the notation rep-
resents even moreso. We have striven to provide a non-trivial example for each
algorithm/transform/concept, but because we are unpacking concise notation, the
sheer volume of arithemtic produced can prove challenging on its own. Do not de-
spair - if you find yourself lost in the details, remind yourself of what we are trying
to compute and the underlying concepts behind the computations and notation.
After all, we’re just multiplying integers, how complex can it be?

1.3. Software. The companion software for this paper can be found on GitHub at
github.com/xiangyazi24/Integer_Mul_REU. All of the examples shown are solved
in software, as well as all algorithms illustrated.

2. Grade School Multiplication

Multiplication dates back to at least 2000 B.C. [3] and of course we all learn
how to multiply integers in grade school. A review of this algorithm gives us a
grasp of the terminology and notation we will use throughout the rest of this paper
to discuss multiplication algorithms. We start with a representation for integers,
which will be useful for later algorithms.

2.1. Integer Representation We can express any positive integer x as a sum-
mation of coefficients raised to a base power [13]:

x =

n−1∑
i=0

XiB
i.

Given a base system and coefficients, we can express x as a coefficient vector with
n entries:

X = {X0, X1, X2, ..., Xn−1}.
E.g. we can represent the number 40342 as

X = {2, 4, 3, 0, 4},

and in base 10 we would have

2 · 100 + 4 · 101 + 3 · 102 + 0 · 103 + 4 · 104 = 40342.

Note that our coefficients for powers appear “backward” in the set/array, as
lower-powered coefficients appear first, but we naturally write higher-power to
lower-power coefficients left to right when expressing numbers. Even from this
simple idea, we can make a few observations that will prove useful later. Given
two positive integers x and y, with one integer having fewer coefficients, we can
still express the integers as vectors of the same length by zero-padding the smaller
integer. E.g. let x = 389 and y = 4, then we can simply say X = {9, 8, 3} and
Y = {4, 0, 0}. If the larger integer has n coefficients, we now have two integers with
n coefficients.

How many coefficients are necessary to store the result of two n-digit positive
integers?

Lemma 2.1. Multiplying two n-digit positive integers requires no more than 2n
coefficients.

4 JT MILLER

Proof. Let x be an n-digit positive integer in positive base B.
x ≤ Bn − 1

x2 ≤ (Bn − 1)2

x2 ≤ B2n − 2Bn + 1

2Bn > 1 for all B > 0, so we may simplify the right side of equation ?? to
x2 < B2n

□

Let’s work an example multiplying 9999× 9999 = 99980001 in base 10. We have
B = 10 and n = 4. In this case, we are using the maximum value (9999) that can
be represented in base 10 with 4 digits. We can simply use equation ?? directly
and compute x2.

x2 = B2n − 2Bn + 1

x2 = 108 − 2 · 104 + 1

x2 = 99980001

Let us now discuss our (modified) grade school multiplication algorithm.

2.2. Algorithm For grade school multiplication, let us use the values x = 1234
and y = 6789 to illustrate our algorithm. Instead of simply multiplying the ones’
digits 9 and 4 and writing the new ones’ digit 6 and carrying the 3, we will write the
individual products in each “column” corresponding to the base power, as shown
in Figure 1. After we have computed all partial products, we add the partial
products within each “column” or base power. Finally, we carry any overflow of
partial products to the next column/base power, and we have our summation of
final products yielding the answer 8377626.

Expressed mathematically, we are performing the following,

xy =

n−1∑
k=0

n−1∑
j=0

XjYkB
j+k. (2.2)

Now, let us determine an algorithm for performing our grade school multiplica-
tion.

Algorithm 1 Grade School Multiplication
for j ∈ {0, 1, ..., n− 1} do

for k ∈ {0, 1, ..., n− 1} do
W [j + k]+ = XjYkB

j+k

end for
end for
c = 0
for j ∈ {0, 1, ..., 2n− 2} do

c = ⌊W [j]/B⌋
W [j] = W [j] (mod B)
W [j + 1]+ = c

end for
return W

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 5

Figure 1. Grade School Multiplication of 1234× 6789

2.3. Time Complexity Analysis We will not belabor the time-complexity anal-
ysis to determine exact counts of the operations involved. In general additions are
easier for computers, so we will typically only care about the number of necessary
multiplications. From Figure 1 we can see that for n digits, we have n× n partial
products to compute. Accordingly, our grade school multiplication algorithm yields
O(n2).

3. Chunky Grade School Multiplication

We can make a simple modification to our grade school multiplication that allows
us to increase our multiplication speed by a factor of our machine’s bit-length.
Because this technique is generic, the exact bit-lengths involved in integer hardware
multiplication aren’t necessarily important. The increase comes by recognizing that
instead of multiplying a single digit at a time, we can multiply chunks of digits. We
will use 123 456× 987 654 = 121 931 812 224 to illustrate1 our chunky grade school
multiplication algorithm improvement.

Figure 2 shows how we can group our digits into chunks. These chunks allow
fewer partial products even though we now have more total digits. The chunks
“skip” base powers by grouping digits.

1Note that the spaces in numbers such as these are strictly for readability purposes. Numbers
formatted with spaces like those in the previous multiplication are still a single contiguous number.

6 JT MILLER

Figure 2. Chunky Grade School Multiplication of 123 456× 987 654

If we group 3 digits then we are using a chunk size of 3 base powers, which we
then keep track of throughout the algorithm. In actual large integer multiplication
algorithms, we must be careful to guarantee that the summation of partial products
for a given base power/column fits within the machine word size/bit width. Let
us use the positive integer h for chunk size, then we have just a small modification
from equation 2.2,

xy =

n−1∑
k=0

n−1∑
j=0

XjYkB
h(j+k). (3.1)

Algorithm 2 Chunkify
Pick a chunk size h > 1
Pad X, Y to kh where k is a positive integer
n = len(X)/h
Xchunky = {0, 0, ..., 0}
Ychunky = {0, 0, ..., 0}
for j ∈ {0, 1, ..., nh− 1} do

Xchunky[⌊j/h⌋]+ = X[j] ∗ 10j (mod h)

Ychunky[⌊j/h⌋]+ = Y [j] ∗ 10j (mod h)

end for
return Xchunky, Ychunky

3.1. Algorithm

3.2. Time Complexity Analysis From Figure 2 we can see that we have reduced
from n × n operations to n/h × n/h operations, which can be a significant real
reduction, but still results in a run time of O(n2).

4. Karatsuba

We now turn our attention to Karatsuba’s algorithm. In 1960, Andrey Kol-
mogorov conjectured that O(n2) was as fast as multiplication could be achieved.
Kolmogorov held a seminar at Moscow University where he presented this and other

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 7

Algorithm 3 Chunky Grade School Multiplication
for j ∈ {0, 1, ..., n− 1} do

for k ∈ {0, 1, ..., n− 1} do
W [j + k]+ = XjYkB

j+k

end for
end for
c = 0
for j ∈ {0, 1, ..., 2n− 2} do

c = ⌊W [j]/Bh⌋
W [j] = W [j] (mod Bh)
W [j + 1]+ = c

end for
return W

conjectures. Anatoly Karatsuba, a 23-year-old student, found a divide and conquer
deconstruction method that multiplies integers in O(nlog2 3) that he presented at
the next seminar, which Kolmogorov then disbanded [15]. Kolmogorov was so im-
pressed with Karatsuba’s algorithm that he wrote a paper for him, which Karatsuba
only became aware of after the edits were mailed back to him [10]. Perhaps the
best way to motivate some is to say that something is impossible.

4.1. Algorithm Karatsuba’s algorithm involves manipulating the partial products
involved in multiplication, a divide and conquer approach. Let the tens’ and ones’
digits of x be ab, or X1 = a, and X0 = b from our previous notation. Similarly,
let the tens and ones’ digits of y be cd, or Y1 = c and Y0 = d. Figure 3 shows this
simple grade school multiplication.

Figure 3. Grade School abcd Multiplication

Note that we are neglecting the base. Figure 4 shows the same multiplication
with our base z included.

8 JT MILLER

Figure 4. Grade School abcdz Multiplication (includes base z)

Karatsuba recognized that the multiplication of partial products, (a+b)(c+d) =
ac + (ad + bc) + bd could be manipulated to yield three multiplications instead of
four. ac is one multiplication, bd is the second, and then we can use the fact that
(ad + bc) = (a + b)(c + d) − (ac + bd) for the third multiplication. We now have
all the partial products necessary, having deconstructed the addition of partial
products. At the cost of a few more additions and subtractions, we can remove
one multiplication. Figure 5 shows this simple coefficient manipulation with the
multiplications numbered at the bottom of equations and the “free” multiplication
shown. The letters A-E denote the arithmetic quantities we will compute during
the algorithm.

Figure 5. Karatsuba’s Manipulation of Coefficients

Figure 6 shows an example for 25 786 109 × 72 166 948 = 1 860 904 787 325 332
with the same coloring used to denote abcd as the previous explanations. Note
that we have combined the algorithm with chunking (typically this is referred to as
blocking, but the term chunking is more fun) that combines several coefficients.

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 9

Figure 6. Karatsuba Example

Karatsuba’s three coefficient products, ac, bd, and (a + b)(c + d), can be used
to recursively subdivide the problem further. Figure 7 shows a larger Karatsuba
example where we recursively apply Karatsuba to coefficients.2 The equations in the
upper right are those as before. The numbers 1-3 show the three multiplications and
the letters A-E denote the arithmetic quantities computed during the algorithm.
We shows these A-E quantities under each stage, including the final summation
with base powers multiplied into computed quantities. Note that we dispense with
printing this final summation after the first stage as the large quantities become
cumbersome to print and we just print the A-E quantities and final result. [15]
provides an excellent graphic with another example and a different representation
of the computations involved.

Algorithm 4 Karatsuba’s Multiplication
Input: Given 2 numbers as ab and cd with a chunk in base z, calculate their

product ab · cd.
α = ac
β = bd
δ = (a+ b)(c+ d)
while α, β, δ > machine number of digits do

Split each of the α, β, δ multiplications into ab, cd and apply Karatsuba.
end while
γ = δ − (α+ β) = (ad+ bc)
return αz2 + γz + β

2The recursion is for illustrative/instructive purposes and unnecessary. We could have used
more coefficients and a larger base power without the recursive stages.

10 JT MILLER

Figure 7. Recursive Karatsuba Example

4.2. Time Complexity Analysis As Algorithm 4 and Figure 7 show, Karatsuba
recursively subdivides the problem in half using three coefficient multiplications
per subdivision. The runtime is then O(nlog2 3). log2 3 ≊ 1.585, with the runtime
complexity of Karatsuba’s algorithm commonly referred to as O(n1.585).

5. Toom-Cook

The Toom-Cook algorithm generalizes the divide and conquer approach used in
Karatsuba. Instead of splitting the multiplicands into two parts, Toom-Cook splits
the multiplication into r parts. Toom-Cook then uses the splits as coefficients in a
polynomial, as we have done before. The clever part of Toom-Cook is to use these
splits parts in the X and Y coefficients to represent polynomials x(t) and y(t), then
multiply those polynomials together. Because the x(t) and y(t) polynomials will
be of degree r− 1, their product will be of degree 2r− 2, at most. We can evaluate
the multiplication of x(t) and y(t) at 2r − 1 points to recover the product w(t), of

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 11

degree 2r − 2 (at most). Hence we are now multiplying together polynomials to
recover integers!

Judicious selection of r and the points at which we multiply the polynomials
yields the best results. Toom-Cook multiplication of n-word numbers takes, at
best, O(n1+1/

√
log n) [2].

Consider that we pad the multiplicands so that we can split the multiplicand
into three coefficients of equal length. We can then write our multiplicands as
polynomials

x(t) = x2t
2 + x1t+ x0

y(t) = y2t
2 + y1t+ y0.

We multiply these two polynomials to produce w(t):

w(t) = x(t) ∗ y(t).

Because we know the maximum degree of w(t), we can write the polynomial’s
representation as

w(t) = w4t
4 + w3t

3 + w2t
2 + w1t+ w0.

We should note that t is equivalent to our base, which of course may be “chunks”.
Hence t = Bh, and tk = Bkh where k is some positive integer. Obviously, w4 =
x2y2, and so on:

w4 = x2y2

w3 = x2y1 + x1y2

w2 = x2y0 + x1y1 + x0y2

w1 = x1y0 + x0y1

w0 = x0y0.

For the Toom-Cook algorithm split into 3 parts, a popular choice for the points
is 0, 1, −1, −2, and ∞. The point at infinity simply reduces to the highest level
coefficient. Our equations reduce nicely using these points:

x(0) = x2(0)
2 + x1(0) + x0 = x0

x(1) = x2(1)
2 + x1(1) + x0 = x2 + x1 + x0

x(−1) = x2(−1)2 + x1(−1) + x0 = x2 − x1 + x0

x(−2) = x2(−2)2 + x1(−2) + x0 = 4x2 − 2x1 + x0

x(∞) = x2(∞)2 + x1(∞) + x0 = x2.

12 JT MILLER

We can further optimize the above arithmetic computations by saving some
partially computed results3 and applying to subsequent arithmetic computations:

γ = x0 + x2 (5.1)
x(0) = x0 (5.2)
x(1) = γ + x1 (5.3)

x(−1) = γ − x1 (5.4)
x(−2) = 2(x(−1) + x2)− x0 (5.5)
x(∞) = x2. (5.6)

The same computations are used for y(t). Now we can compute w(t) = x(t)y(t).
At this point, we will introduce some linear algebra that compactly shows the 2r−1
equations we are solving and how we can obtain w(t) (and the W s we are after) by
inverting this matrix. For those unfamiliar with linear algebra, you can skip down
below to where we restate w(t). You can solve the simultaneous set of equations to
arrive at the same point.

w(0)
w(1)
w(−1)
w(−2)
w(∞)

 =

00 01 02 03 04

10 11 12 13 14

(−1)0 (−1)1 (−1)2 (−1)3 (−1)4
(−2)0 (−2)1 (−2)2 (−2)3 (−2)4

0 0 0 0 1

w0

w1

w2

w3

w4

=

1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 −2 4 −8 16
0 0 0 0 1

w0

w1

w2

w3

w4

 .

Because we were judicious in the choice of our evaluation points, the matrix
above is invertible, and we may simply invert the matrix to solve for our coefficients
directly.

w0

w1

w2

w3

w4

 =

1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 −2 4 −8 16
0 0 0 0 1

−1

w(0)
w(1)
w(−1)
w(−2)
w(∞)

=

1 0 0 0 0
1/2 1/3 −1 1/6 −2
−1 1/2 1/2 0 −1
−1/2 1/6 1/2 −1/6 2
0 0 0 0 1

w(0)
w(1)
w(−1)
w(−2)
w(∞)

3Note that γ is simply a variable we use for the partial computation of x0 + x2, there is no
other significance.

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 13

For our friends without linear algebra rejoining us, this is

w0 = w(0)

w1 =
1

2
w(0) +

1

3
w(1)− w(−1) + 1

6
w(−2)− 2w(∞)

w2 = −w(0) + 1

2
w(1) +

1

2
w(−1)− w(∞)

w3 = −1

2
w(0) +

1

6
w(1) +

1

2
w(−1)− 1

6
w(−2) + 2w(∞)

w4 = w(∞)

Note that we could optimize this by computing partial summations and then
reusing results as we did in Equation 5.1-5.6. We leave this as an exercise for the
reader. Let us compute a Toom-3 example with 698 310 488 572 646 777 019 184 ×
144 585 992 498 882 884 065 634 = 100 965 915 062 655 948 833 325 499 910 140 535 809 533 122 656.
Here,

x2 = 69 831 048

x1 = 85 726 467

x0 = 77 019 184

y2 = 14 458 599

y1 = 24 988 828

y0 = 84 065 634.

Now we can compute our points for our x and y polynomials:

x(0) = x0 = 77 019 184

x(1) = x2 + x1 + x0 = 69 831 048 + 85 726 467 + 77 019 184 = 232 576 699

x(−1) = x2 − x1 + x0 = 69 831 048− 85 726 467 + 77 019 184 = 61 123 765

x(−2) = 4x2 − 2x1 + x0 = 4 · 69 831 048− 2 · 85 726 467 + 77 019 184 = 184 890 442

x(∞) = x2 = 85 726 467

y(0) = y0 = 84 065 634

y(1) = y2 + y1 + y0 = 14 458 599 + 24 988 828 + 84 065 634 = 123 513 061

y(−1) = y2 − y1 + y0 = 14 458 599− 24 988 828 + 84 065 634 = 73 535 405

y(−2) = 4y2 − yx1 + y0 = 4 · 14 458 599− 2 · 24 988 828 + 84 065 634 = 91 922 374

y(∞) = y2 = 14 458 599.

And then multiply the two polynomials points’ together to yield points for w(t):

w(0) = x(0)y(0) = 77 019 184 · 123 513 061 = 6 474 666 533 122 656

w(1) = x(1)y(1) = 232 576 699 · 73 535 405 = 28 726 260 010 765 639

w(−1) = x(−1)y(−1) = 61 123 765 · 84 065 634 = 4 494 760 814 399 825

w(−2) = x(−2)y(−2) = 77 019 184 · 91 922 374 = 16 995 568 358 549 308

w(∞) = x(∞)y(∞) = 184 890 442 · 14 458 599 = 1 009 659 120 781 752.

14 JT MILLER

We then multiply our inverse matrix by w(t)’s points to yield the coefficients:
w0 = 6474 666 533 122 656

w1 = 9131 268 940 611 430

w2 = 9126 184 758 678 324

w3 = 2984 480 657 571 477

w4 = 1009 659 120 781 752.

Now we perform the carries based on our chunk size. We used a chunk of 8,
hence we carry beyond 108 digits of each chunk to the next chunk. As an example,
for w0, the lower 8 digits are 33 122 656 and we carry and add 64 746 665 to the
lower 8 digits of the next chunk, 40 611 430, giving us 64 746 665 + 40 611 430 =
105 358 095. Hence the lower 16 digits of our product are 535 809 533 122 656. We
continue in this manner to find our final answer of 698 310 488 572 646 777 019 184×
144 585 992 498 882 884 065 634 =
100 965 915 062 655 948 833 325 499 910 140 535 809 533 122 656.

5.1. Algorithm The algorithm for Toom-3 is straightforward and was demon-
strated in the previous example. For completeness, the algorithm above, and re-
produced from [6], follows.

Algorithm 5 Toom-3
r0 = x0 − 2x1 + 4x2

r1 = x0 − x1 + x2

r2 = x0

r3 = x0 + x1 + x2

r4 = x0 + 2x1 + 4x2

x0 = y0 − 2y1 + 4y2
s1 = y0 − y1 + y2
s2 = y0
s3 = y0 + y1 + y2
s4 = y0 + 2y1 + 4y2
for 0 ≤ j < 5 do

tj = rjsj
end for
z0 = t2
z1 = t0/12− 2t1/3 + 5t3/3− t4/12
z2 = −t0/24 + 2t1/3− 5t2/4 + 2t3/3− t4/24
z3 = −t0/12 + t1/6 + t4/12
z4 = t0/24− t1/6 + t2/4− t3/6 + t4/24
Perform carries
return (z0, z1, z2, z3, z4, carry)

5.2. Time Complexity Analysis The basic form of Toom-Cook k-way is to split
the operands into k partial products. For Toom-3 as we demonstrated, we split
into 3 partial products but have 5 multiplies at each stage, so the complexity is
O(nlog3 5). Note how quickly the number of coefficient terms for our polynomial
grows as we partition our multiplicands into larger numbers. In most cases, this
limits the practical use of Toom-Cook to three or four partitions.

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 15

6. Convolution, the DFT, and the FFT

The Toom-Cook algorithm showed an alternate method to carry out multipli-
cation rather than just optimizing the mechanics of our familiar grade school mul-
tiplication process. In the case of Toom-Cook, that was using the multiplicands
as coefficients for polynomials, multiplying enough points to represent a resultant
polynomial, then interpolating back into the coefficients that represent our desired
product. Such alternate methods are often referred to as transforms. We con-
tinue on this path of transforms now with the Discrete Fourier Transform (DFT).
The Discrete Fourier Transform (DFT) is typically used to take a number of time-
domain samples and transform those samples to show the frequency domain content
of the signal represented by the time-domain samples. The Fast Fourier Transform
(FFT) is a novel method to compute the DFT quickly with the restriction that the
number of time domain samples must be a binary power, i.e. 2m for some positive
integer m. We will utilize the DFT and FFT algorithms that transform a time-
domain signal to a frequency domain signal to transform our multiplication process.
Before we get to these transforms, we will review the DFT and FFT algorithms.

6.1. The Discrete Fourier Transform. The DFT formula is

Xm =

N−1∑
n=0

xne
−i2πnm/N .

where e−i2πnm/N is a complex number that represents cos(2πk/n)− i sin (2πk/n).
The interesting thing to note, from a number theoretic transform viewpoint, is
that ei2πk/n raised to any positive integer always has a magnitude of 1. That is,
|e−i2πnm/N | = 1. A root of unity is a number with the property that when raised
to a positive integer power, the result is 1. This will be important in our use of
the DFT/FFT to compute the multiplication of large integers. The DFT provides
the spectral content of the signal, and the larger the number of points used, N , the
finer the resolution of the spectral content, and the more calculations that must be
carried out to attain the DFT.

The root of unity quantity e−i2πnm/N is often called the twiddle factor in the
DFT and FFT. We use a shorthand to denote twiddle factors:

WN = e−i2π/N . (6.1)
The DFT then becomes:

Xm =

N−1∑
n=0

xnW
nm
N .

Why are we bothering to introduce the DFT and how to transform a signal
from the time domain to the frequency domain? Because convolution in the time
domain of coefficients is the same as multiplication. The issue with convolution
in the time domain is that it is slow, the same as our O(n2) from grade school
multiplication. But convolution in the time domain is the same as multiplication
in the frequency domain. The Fast part of the FFT means we can perform our
transform inO(n log n). We can quickly transform our signal made up of polynomial
coefficients (our time domain signal) using the FFT, do a point-wise multiplication
in the frequency domain, then transform back into the time domain by computing
an inverse FFT. We are now transforming and multiplying transforms to complete
our large integer multiplication!

16 JT MILLER

Let’s first demonstrate that convolution of polynomial coefficients is the same as
multiplication. Let’s use 1234× 6789 as our example. In this case, we have

x = {4, 3, 2, 1}
y = {9, 8, 7, 6}.

The convolution is defined as

(x ∗ y)(n) =
∞∑

k=−∞

x(k)y(n− k). (6.2)

If we are working with coefficients for a polynomial with n coefficients, we can
change the summation limits to reflect the actual limits of the summation. Re-
member that our product can have up to 2n coefficients if our multiplicands each
have n bits. Because we’re starting our numbering at 0, we set the upper limit at
2n − 1. While we’re at it, let’s use a new variable for the convolution result and
define h = x ∗ y, then:

h(n) =

2n−1∑
k=0

x(k)y(n− k). (6.3)

Let’s work through our example of x = 1234× y = 6789:

h0 = x0y0 = 4 · 9 = 36

h1 = x0y1 + x1y0 = 4 · 8 + 3 · 9 = 59

h2 = x0y2 + x1y1 + x2y0 = 4 · 7 + 3 · 8 + 2 · 9 = 70

h3 = x0y3 + x1y2 + x2y1 + x3y0 = 4 · 6 + 3 · 7 + 2 · 8 + 1 · 9 = 70

h4 = x1y3 + x2y2 + x3y1 = 3 · 6 + 2 · 7 + 1 · 8 = 40

h5 = x2y3 + x3y1 = 2 · 6 + 1 · 7 = 19

h6 = x3y3 = 6

Of course, we then carry at each power:

h0 = 6 → 6

h1 = 59 + 3 → 2

h2 = 70 + 6 → 6

h3 = 70 + 7 → 7

h4 = 40 + 7 → 7

h5 = 19 + 4 → 3

h6 = 6 + 2 → 8

So our final answer is 1234 × 6789 = 8 377 626. This operation should look
extremely familiar. This is the same as our initial grade school example from
section 2.2. We reproduce Figure 1 here for convenience.

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 17

Figure 8. Grade School Multiplication of 1234× 6789 - again

To provide a visual, many texts discuss the convolution operation in terms of
reflecting one function about the y-axis and sliding that function, x(n) in this case,
across the other. When we do this we will see the same grade school multiplication
operation that we are used to. Figure 9 below illustrates the operation. Note
that we have provided zeroes for coefficients outside our populated coefficients. We
dispense with these zeroes to show the ”sliding” of x(n) across y(n). The box drawn
around the coefficients shows us which terms we are multiplying (vertically) and
summing (horizontally) to compute each h(n) coefficient.

18 JT MILLER

Figure 9. Multiplication via Convolution of 1234× 6789 = 8 377 626

Comparing the partial products summed for each coefficient to the grade school
multiplication columns in Figure 8, we find that the partial products summed for
each coefficient are exactly the same. Convolution of polynomial coefficients for
base power expression of two numbers is exactly the same as multiplication4.

Obviously, from here and our examples before, the time complexity of the con-
volution operation is O(n2). Let us now turn to the Fast Fourier Transform and
how we may quickly compute the DFT using the FFT.

6.2. The Fast Fourier Transform. The Fast Fourier Transform algorithm cre-
ated by Cooley and Tukey in 1965 [4] creates a divide-and-conquer method to

4Note that convolution of two functions/signals is not the same as multiplication - we have
cleverly expressed our multiplicands as polynomials using base powers and coefficients and for
that specific case, convolution is the same as multiplication. However, in general, that is not the
case.

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 19

compute the DFT and take advantage of the symmetry and rotation properties of
the complex exponentials used in the DFT. Recall the equation for the DFT:

X(m) =

N−1∑
n=0

x(n)e−i2πnm/N .

And the twiddle factor expression:

WN = e−i2π/N .

The DFT with the twiddle factor then becomes:

X(m) =

N−1∑
n=0

x(n)Wmn
N .

And finally, the FFT will make heavy use of the symmetry and periodicity proper-
ties of complex exponentials [12]:

Symmetry property: W
m+N/2
N = −Wm

N

Periodicity property: Wm+N
N = Wm

N

The FFT begins by dividing the DFT summation into the even (2n) and odd (2n+1)
terms:

X(m) =

N−1∑
n=0

x(n)Wmn
N

=

N/2−1∑
n=0

x(2n)W
(2n)m
N +

N/2−1∑
n=0

x(2n+ 1)W
(2n+1)m
N

=

N/2−1∑
n=0

x(2n)W 2nm
N +Wm

N

N/2−1∑
n=0

x(2n+ 1)W 2nm
N

where we have simply factored out the constant Wm
N from the (2n + 1) odd term

in the second summation. We can use the periodicity property to simplify the
expression further. Because

W 2m
N = e−i2π(2m)/N = e−i2πm/(N/2) = Wm

N/2

we can write

X(m) =

N/2−1∑
n=0

x(2n)Wnm
N/2 +Wm

N

N/2−1∑
n=0

x(2n+ 1)Wnm
N/2 (6.4)

where m is in the range of 0 to N/2 − 1. We can substitute (m + N/2) for m to
obtain the other half of the equation:

X(m+N/2) =

N/2−1∑
n=0

x(2n)W
n(m+N/2)
N/2 +W

(m+N/2)
N

N/2−1∑
n=0

x(2n+ 1)W
n(m+N/2)
N/2 .

(6.5)

20 JT MILLER

As Lyons notes in [11], this looks worse, but we can use our complex exponential
properties to reduce the complexity of the equations.

W
n(m+N/2)
N/2 = Wnm

N/2W
n(N/2)
N/2 = Wnm

N/2e
−i2πn(N/2)/(N/2) (6.6)

= Wnm
N/2e

−i2πn = Wnm
N/2(1) = −W

nm
N/2 (6.7)

as e−i2πn = 1 for any integer n. Similarly, we may reduce the twiddle factor in
front of the second summation:

W
(m+N/2)
N = Wm

N W
N/2
N = Wm

N e−i2π(N/2)/N (6.8)
= Wm

N e−iπ = Wm
N (−1) = −Wm

N . (6.9)
We may now substitute 6.6 and 6.8 into 6.5 to simplify the second half of the

FFT:

X(m+N/2) =

N/2−1∑
n=0

x(2n)Wnm
N/2 −Wm

N

N/2−1∑
n=0

x(2n+ 1)Wnm
N/2. (6.10)

Finally, let’s write the equations for the first N/2 points from equation 6.4 and
second N/2 points from equation 6.10 together:

X(m) =

N/2−1∑
n=0

x(2n)Wnm
N/2 +Wm

N

N/2−1∑
n=0

x(2n+ 1)Wnm
N/2 (6.11)

X(m+N/2) =

N/2−1∑
n=0

x(2n)Wnm
N/2 −Wm

N

N/2−1∑
n=0

x(2n+ 1)Wnm
N/2. (6.12)

We can now see how similar these two equations are, and start to see how this
divide and conquer vastly reduces our computations. In practice, the number of
bits for a particular multiply is fixed, and this allows us to compute the twiddle
factors ahead of time and store them in a lookup table. Let’s continue the divide-
and-conquer approach. We can further split the even and odd summations:

N/2−1∑
n=0

x(2n)Wnm
N/2 =

N/4−1∑
n=0

x(4n)W 2nm
N/2 +

N/4−1∑
n=0

x(4n+ 2)W
(2n+1)m
N/2 .

We can use W 2nm
N/2 = Wnm

N/4 to simplify these two N/4-point DFTs:
N/2−1∑
n=0

x(2n)Wnm
N/2 =

N/4−1∑
n=0

x(4n)Wnm
N/4 +Wm

N/2

N/4−1∑
n=0

x(4n+ 2)Wnm
N/4.

Similarly,
N/2−1∑
n=0

x(2n+ 1)Wnm
N/2 =

N/4−1∑
n=0

x(4n+ 1)Wnm
N/4 +Wm

N/2

N/4−1∑
n=0

x(4n+ 3)Wnm
N/4.

At this point a graphic may be instructive. We can think of the FFT as a set of
recursive equations where we work backward through the DFT summation, halving
the computed sum at each step. Figure 10 shows how this would look for an 8-point
FFT. Decimation in time refers to the fact that we are halving the computed time
series at each step - how we separate the summation into (2n) and (2n+1) samples.
If we separated the DFT output series into even and odd samples then we would

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 21

Figure 10. 8-point Decimation in Time FFT

be creating a decimation-in-frequency DFT. Both approaches are used in practice
and yield the same result, aside from quantization error.

22 JT MILLER

Figure 10 shows an 8-point DFT with its various butterfly stages. Reconciling
the decimation in time FFT butterfly stages with the equations is not necessarily
intuitive. In a moment, we will enumerate the various butterflies at each stage to
show how the computations break down. For now, what is intuitive is the O(n)
multiplications at each stage, and that there are log2n total stages to the radix-2
decimation-in-time FFT. Hence the FFT is a O(n log n) algorithm.

Now let’s turn to computing the FFT at each stage. We start with the output,
which we know is simply

X(m) =

N−1∑
n=0

x(n)Wnm.

We split this into the two equations shown into a summation of even and odd time
samples (decimated in time), shown below for reference:

X(m) =

N/2−1∑
n=0

x(2n)Wnm
N/2 +Wm

N

N/2−1∑
n=0

x(2n+ 1)Wnm
N/2

X(m+N/2) =

N/2−1∑
n=0

x(2n)Wnm
N/2 −Wm

N

N/2−1∑
n=0

x(2n+ 1)Wnm
N/2.

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 23

Figure 11. 16-point Decimation in Time FFT

24 JT MILLER

Figure 12. 16-point Decimation in Time FFT Stage 4

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 25

Remember, we go to the left to halve our summations again. This brings us to
the third stage in our 16-point FFT, where we have divided the total points, 16 in
this case, by four (N/4). Figure 13 shows these four summations.

Figure 13. 16-point Decimation in Time FFT Stage 3

26 JT MILLER

Dividing our sums again we move one more stage to the left to the second stage
in our 16-point FFT. Not that here we have eight summations. Figure 14 shows
the summations for the second stage of our 16-point FFT.

Figure 14. 16-point Decimation in Time FFT Stage 2

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 27

Finally, we move once again to the left, arriving at the first stage of our 16-point
FFT, shown in Figure 15. Although we have kept the sums general, it is trivial to
derive the sum for this first stage. For instance, looking at the first equation X(m),
we have

X(m) =

N/16−1∑
n=0

x(16n)Wnm
N/16 +Wm

N/8

N/16−1∑
n=0

x(16n+ 8)Wnm
N/16

X(0) = x(0) ·W 0
1 +W 0

2 · x(8) ·W 0
1 = x(0) + x(8)

Figure 15. 16-point Decimation in Time FFT Stage 1

28 JT MILLER

Similarly, we can derive the second point X(1):

X(m) =

N/16−1∑
n=0

x(16n)Wnm
N/16 −Wm

N/8

N/16−1∑
n=0

x(16n+ 8)Wnm
N/16

X(1) = x(0) ·W 0
1 −W 1

2 · x(8) ·W 0
1 = x(0)− e−j2π/2 · x(8) = x(0) + x(8)

We derive X(2) and X(3) for further demonstration:

X(m) =

N/16−1∑
n=0

x(16n+ 4)Wnm
N/16 +Wm

N/8

N/16−1∑
n=0

x(16n+ 12)Wnm
N/16

X(2) = x(4) ·W 0
1 +W 2

2 · x(8) ·W 0
1 = x(12) + e−j2π2/2 · x(12) = x(4) + x(12)

X(m) =

N/16−1∑
n=0

x(16n+ 4)Wnm
N/16 −Wm

N/8

N/16−1∑
n=0

x(16n+ 12)Wnm
N/16

X(3) = x(4) ·W 0
1 −W 1

2 · x(12) ·W 0
1 = x(4)− e−j2π3/2 · x(12) = x(4) + x(12)

and so forth.

6.3. Algorithm The recursive FFT algorithm from [7] is reproduced in Algo-
rithm 6. Note that typically n is known ahead of time and we can precompute the
maximum WN roots of unity and use that set to derive all others (e.g. W 2

4 = W 4
8).

Algorithm 6 Fast Fourier Transform Decimation-in-Time
Input: a, an n-length coefficient vector where n is a power of 2, and w, a primitive

root of unity
Output: A vector, y, of values of the polynomial for a at the nth roots of unity.

if n = 1 then
return y = a

end if
x← w0

aeven ← [a0, a2, a4, ..., an−2]
aodd ← [a1, a3, a5, ..., an−1]
yeven ← FFT (aeven, w

2)
yodd ← FFT (aodd, w

2)
for i← 0 to n/2− 1 do

yi ← yi,even + x · yi,odd
yi+n/2 ← yi,even − x · yi,odd
x← x · w

end for
return y

6.4. Time Complexity Analysis As we have given a large number of equations,
examples, and diagrams, it should be clear that the FFT recursively divides sum-
mation calculations into half. Thus, the FFT decreases the stages of the DFT to
O(log n), with O(n) operations in each stage. In total this gives a run time com-
plexity of O(n log n). In practice the FFT is highly efficient as the number of points
is known ahead of time and all twiddle factors may be precomputed and stored.

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 29

6.5. The Inverse DFT and FFT. The DFT has an inverse:

x(n) =
1

N

N−1∑
m=0

X(m)ej2pim/N

and the Inverse FFT derivation is much the same as the FFT. We leave this as
an exercise for the reader. Note the 1/N term at the front. Fortunately, because
we have restricted N to be a binary power, we may simply shift the result of the
summation, which is the same as dividing by a binary power.

7. Multiplication via the FFT

Now that we have the tools of the FFT, multiplication via the FFT is rather
straightforward5. Given our digits, we pad both digits to some binary power D,
then zero-pad to 2D. This is to account for the typical 2n bits necessary from an
n-bit multiply. Given that we are using the radix-2 FFT, we extend n to D and
the 2n to 2D. We then perform the FFT on our input coefficients, multiply each of
the coefficients together, then perform the IFFT. We then adjust our carries across
bases and are finished.

7.1. Algorithm Algorithm 7, modified slightly from from [6], provides the basic
algorithm for multiplying two positive integers using the FFT and IFFT.

Algorithm 7 Basic FFT Multiplication
Output: Given two polynomial coefficient vectors x, y with length less than or

equal to a binary power D.
Zero-pad x, y to length 2D.
X = FFT (x)
Y = FFT (y)
Z = X · Y (element-wise multiplication)
z = IFFT (z)
z = round(z) (See section 7.2 regarding this step.)
z = carry_ones(z)
z = remove_leading_zeros(z)
return z

For our example we can revisit the same multiplication from section 5,
698 310 488 572 646 777 019 184× 144 585 992 498 882 884 065 634 =
100 965 915 062 655 948 833 325 499 910 140 535 809 533 122 656. First we set

x = {4, 8, 1, ..., 9, 6},
y = {4, 3, 6, ..., 4, 1}.

A quick count shows max(x, y) = 24, so we set D = 2⌈log224⌉ = 32 and 2D = 64,
zero padding the coefficients for x and y. We can now take the FFT of x and y,

5Note that we are giving the simplest form of this FFT multiply. Section 7.2 discusses addi-
tional considerations for practical use of the algorithm.

30 JT MILLER

X = FFT (x) and Y = FFT (y), respectively. The first and last few terms of each
are:

X = {121, 37.667− 86.807i,−24.665− 27.021i, ..., 37.666 + 86.807i},
Y = {130, 43.664− 98.099i,−39.298− 38.374i, ..., 43.664 + 98.099i}.

We then multiply the elements of X and Y together to obtain Z,
Z = X · Y,
Z = {15730.0,−6871.016− 7485.332i,−67.622 + 2008.389i, ...,−6871.016 + 7485.332i}.
We then take the IFFT of Z to obtain z and round the results:

z = IFFT (Z),

z = round(z),

z = {16, 44, 52, ..., 68, 33, 6, 0, ..., 0}.
At this point we carry the ones from each base power to the next in our resultant
coefficient polynomial:

z = {6, 5, 6, ..., 9, 0, 0, 1, ..., 0}.
We can then remove all the leading zeroes, or remove all consecutive zero entries
descending through the polynomial coefficient degrees until we reach the first non-
zero entry. At that point, we have our answer:
698 310 488 572 646 777 019 184× 144 585 992 498 882 884 065 634 =
100 965 915 062 655 948 833 325 499 910 140 535 809 533 122 656.

7.2. Floating-Point Complications and Time Complexity Analysis There
are multiple issues using the FFT to perform large integer multiplication. First,
as the interim results from the prior section showed, the FFT requires complex,
floating-point values. As we also saw, even though we are using single-digit coeffi-
cients, the FFT produces values which are very large for a single coefficient. There
are two issues: enough numerical precision for our primitive roots of unity, and
preventing overflow within each of the coefficients.

The FFT is remarkably well behaved in terms of stability[9], but we must have
enough bits to ensure that we carry enough precision through the FFT calcula-
tions[12]. At a minimum, we need to be able to differentiate twiddle factors, or
points on the unit circle. The methods to determine when to split these calcu-
lations further to provide smaller blocks of numbers or more precision are quite
involved. Interested parties are referred to [2] which provides a helpful amount of
detail. These details involving the FFT computations for arbitrarily-sized numbers
require another log log n term in our big O notation, yielding a final time complexity
of O(n log n log log n)[2, 9, 12].

8. Modulo Arithmetic and Prime Numbers

Fourier was primarily concerned with decomposing time-domain signals into their
frequency domain content via sines and cosines to understand heat flow [1], and
the Discrete Fourier Transform is the discrete version of the Fourier transform
and indeed gives cyclic frequency domain content via Euler’s e−i2πn/N . From a
mathematical point of view, the DFT, and by extension the FFT, can continue to
carry out transforms so long as we use a primitive root of unity in the transform
and that root has an inverse. In this paper so far we have used the complex

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 31

exponential e−i2πn/N as our primitive root of unity in the DFT/FFT, but there are
other primitive roots of unity using primes and modulo arithmetic.

We may more abstractly define the DFT of a signal x of length D, where D−1

exists, and g, a primitive D-th root of D exists, then the DFT of x, X = DFT (x)
is defined as:

X(m) =

D−1∑
n=0

x(n)g−jm

and if using modulo arithmetic for some prime p, then

X(m) =

D−1∑
n=0

x(n)g−jm mod p.

If we use modulo arithmetic instead of the complex exponential as our primitive
root of unity g, then we call the transform a Number-Theoretic Transform (NTT).
There are a large number of NTTs used in the multiplication of large integers,
typically dealing with prime numbers [1, 5, 6, 8, 13, 14]. The most widely-used NTT
for large integer multiplication is Schönhage-Strassen. Here the NTT is sometimes
called a Fermat Number Transform (FNT)6.

For background regarding the multitude of necessary prime number properties
requisite to compute the FNT in Schönage-Strassen, we highly recommend review-
ing [13].

9. Schönhage-Strassen

The Schönhage-Strassen algorithm typically uses a prime number in the format
2n − 1 generating a finite field/ring Z2n+1. The primitive root of unity must be a
generator for the chosen prime. Schönhage-Strassen is typically used for numbers
with hundreds of thousands of digits. Because the complex FFT is so well behaved,
the complex FFT is used even though Schönhage-Strassen does not have the same
issues with floating-point precision.

The 2n−1 prime, when coupled with other restrictions on the generator, grouping
of digits, and length of the padded input vectors, yield several nice properties for the
algorithm that reduce all operations aside from the multiplication of transformed
numbers to shifts and adds, which helps to compensate for some of the complexity
of the algorithm [6].

For our example, we will pick a small prime and generator to illustrate the
algorithm with our previous example of 1234 × 6789 = 8 377 626. We will use the
prime p = 337 and primitive root of unity/generator w = 85. We group single
decimal digits for ease, and take the NTT of our input vectors:

X = NTT (x) = {10, 329, 298, 126, 2, 271, 43, 301}
Y = NTT (y) = {30, 32, 298, 34, 2, 36, 43, 271}.

We can then point-wise multiply our individual transforms modulo p to obtain
the polynomial coefficients of our result in Zp:

Z = X · Y mod p

Z = {300, 81, 173, 240, 4, 320, 164, 17}.

6In honor of Fermat’s contributions rather than having anything to do with a Fermat number.

32 JT MILLER

We then take the inverse Number Theoretic Transform or INTT:

z = INTT (Z)

z = {36, 59, 70, 70, 40, 19, 6, 0}.

From here we then simply perform our typical carry operation to yield the final
answer:

z = carry_ones(z)

z = {6, 2, 6, 7, 7, 3, 8, 0}.

We can then strip leading zeroes and write our final answer, 1234 × 6789 =
8 377 626.

9.1. Algorithm The algorithm here is taken from [6] and adapted slightly to be
consistent with the notation we have been using throughout the paper.

Algorithm 8 Schönhage-Strassen FNT
Input: Given 0 ≤ x, y < 2n + 1, this algorithm returns xy mod (2n + 1).

Choose NTT size D = 2k|n.
With n = DM , set a recursion length n′ ≥ SM + k such that D|n′ (e.g. n′ =
DM ′).
Split x and y into D parts of M bits each, and store these parts, consid-
ered residues modulo (2n

′
+ 1) into two respective arrays X0, X1, ..., XD−1 and

Y0, Y1, ..., YD−1. Note that each element could have n′ + 1 bits later on.
for 0 ≤ j < D do

Xj = (2jM
′
Xj) mod (sn

′+1)

Yj = (2jM
′
Yj) mod (sn

′+1)
end for
X = NTT (X) (Use 22M

′ as D-th root mod (2n
′1 + 1))

Y = NTT (Y)
for 0 ≤ j < D do

Zj = XjYj mod (2n
′
+ 1)

end for
z = NTT (Z)
for 0 ≤ j < D do

cj = ZD−j/2
k+jM ′

mod (2n
′
+ 1)

if cj > (j + 1)22M then
cj = cj − (2n

′
+ 1) (cj may be negative)

end if
end for
Perform carry operations as done previously for cj ’s.
return z mod (2n + 1)

Note that above we have used NTT to denote the Number Theoretic Transform
that is the finite-field FFT.

LARGE INTEGER MULTIPLICATION: A FRIENDLY SURVEY OF ALGORITHMS 33

9.2. Time Complexity Analysis Similar to the complex FFT, the Schönhage-
Strassen algorithm yields a complexity of O(n log n log log n). The n log n term is
rather obvious as it is the same as the complex FFT. The log log n term comes
from having to reduce the size of the interim products with the NTT. This extra
complexity of log log n yields a final time-complexity for the Schönhage-Strassen
algorithm of O(n log n log log n).

10. Conclusion

We have provided a survey of large integer multiplication algorithms, tracing
from grade school multiplication to the first advancement with Karatsuba, then
Toom-Cook (specifically Toom-3), and culminating with advanced approaches that
built on convolution and transforms using primitive roots of unity and the complex
FFT, culminating in finite-field arithmetic with Schönhage-Strassen. These algo-
rithms took us from O(n2) to O(n log n log log n). In 2019 David Harvey and Joris
van der Hoeven found an O(n log n) method [8]. The method is highly specialized
and due to a multitude of complicated constants, does not eclipse the methods we
have already covered until galactic-scale numbers come into play (millions of digits
and beyond). Accordingly, the algorithms presented in this paper are still relevant
and used in big number code libraries.

We hope this paper will prove a useful introduction and reference to large integer
multiplication methods for those interested in the subject.

34 JT MILLER

Acknowledgments

I would like to extend my heartfelt thanks to Dr. Huang for allowing me to pursue
an open-ended survey topic and providing guidance and motivation along the way.
I am aware that an undergraduate survey of existing algorithms has few tangible
benefits for a professor, but this has been a tremendously rewarding experience
for me. Thank you for patience during the weeks where I was making no visible
progress. Thank you for your mentorship and gentle steering during this survey.
Most of all, thank you for sharing your passion for algorithms and mathematics.
That passion is infectious and has made working with you not just a rewarding,
but joyful experience.

References

[1] Jean Baptiste Joseph Baron Fourier et al. The analytical theory of heat.
Courier Corporation, 2003.

[2] Richard P Brent and Paul Zimmermann. Modern computer arithmetic. Vol. 18.
Cambridge University Press, 2010.

[3] David M Burton. “The history of mathematics: An introduction”. In: Group
3.3 (1985), p. 35.

[4] James W Cooley and John W Tukey. “An algorithm for the machine calcula-
tion of complex Fourier series”. In: Mathematics of computation 19.90 (1965),
pp. 297–301.

[5] Richard E Crandall. “Integer convolution via split-radix fast Galois trans-
form”. In: Center for Advanced Computation Reed College (1999).

[6] Richard E Crandall and Carl Pomerance. Prime numbers: a computational
perspective. Vol. 2. Springer, 2005.

[7] Michael T Goodrich and Roberto Tamassia. Algorithm design and applica-
tions. Vol. 363. Wiley Hoboken, 2015.

[8] David Harvey and Joris Van Der Hoeven. “Integer multiplication in time
O(nlog\,n)”. In: Annals of Mathematics 193.2 (2021), pp. 563–617.

[9] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM,
2002.

[10] Anatolii Alexeevich Karatsuba. “The complexity of computations”. In: Pro-
ceedings of the Steklov Institute of Mathematics-Interperiodica Translation
211 (1995), pp. 169–183.

[11] Richard G Lyons. Understanding digital signal processing, 3/E. Pearson Ed-
ucation India, 1997.

[12] John G Proakis and Dimitris G Manolakis. Digital signal processing: princi-
ples, algorithms, and edition. 1995.

[13] Joseph H Silverman. A friendly introduction to number theory. Pearson, 2014.
[14] Charles Van Loan. Computational frameworks for the fast Fourier transform.

SIAM, 1992.
[15] Wikipedia. Karatsuba algorithm — Wikipedia, The Free Encyclopedia. [On-

line; accessed 12-November-2023]. 2023. url: http://en.wikipedia.org/
w/index.php?title=Karatsuba%5C%20algorithm%5C&oldid=1171220798.

University of Illinois at Springfield
Email address: jt.miller@txbinary.com

